Skip to main content

proper and improper fractions along with explanation

Let's dive into some examples of proper and improper fractions along with explanations.




### Proper Fractions


A proper fraction is a fraction where the numerator (the top number) is less than the denominator (the bottom number). Proper fractions represent a part of a whole.


**Example 1:**

\[ \frac{3}{4} \]

- **Explanation**: The numerator (3) is less than the denominator (4). This fraction represents three parts out of four equal parts, which is less than one whole.


**Example 2:**

\[ \frac{7}{10} \]

- **Explanation**: The numerator (7) is less than the denominator (10). This fraction represents seven parts out of ten equal parts, which is also less than one whole.


### Improper Fractions


An improper fraction is a fraction where the numerator is greater than or equal to the denominator. Improper fractions represent one whole or more.


**Example 1:**

\[ \frac{9}{8} \]

- **Explanation**: The numerator (9) is greater than the denominator (8). This fraction represents more than one whole. In mixed number form, it can be expressed as \(1 \frac{1}{8}\).


**Example 2:**

\[ \frac{12}{5} \]

- **Explanation**: The numerator (12) is greater than the denominator (5). This fraction represents more than one whole. In mixed number form, it can be expressed as \(2 \frac{2}{5}\).


### Converting Improper Fractions to Mixed Numbers


To convert an improper fraction to a mixed number, divide the numerator by the denominator to get the whole number part and use the remainder as the new numerator.


**Example 1:**

Convert \(\frac{9}{4}\) to a mixed number.

- **Explanation**: Divide 9 by 4 to get 2 with a remainder of 1. The mixed number is \(2 \frac{1}{4}\).


**Example 2:**

Convert \(\frac{15}{6}\) to a mixed number.

- **Explanation**: Divide 15 by 6 to get 2 with a remainder of 3. The mixed number is \(2 \frac{3}{6}\), which simplifies to \(2 \frac{1}{2}\).


### Converting Mixed Numbers to Improper Fractions


To convert a mixed number to an improper fraction, multiply the whole number part by the denominator and add the numerator. Place this result over the original denominator.


**Example 1:**

Convert \(3 \frac{2}{5}\) to an improper fraction.

- **Explanation**: Multiply 3 (the whole number part) by 5 (the denominator) to get 15. Add 2 (the numerator) to get 17. The improper fraction is \(\frac{17}{5}\).


**Example 2:**

Convert \(4 \frac{3}{7}\) to an improper fraction.

- **Explanation**: Multiply 4 (the whole number part) by 7 (the denominator) to get 28. Add 3 (the numerator) to get 31. The improper fraction is \(\frac{31}{7}\).


### Summary


- **Proper fractions** have numerators less than denominators (e.g., \(\frac{3}{4}\), \(\frac{7}{10}\)).

- **Improper fractions** have numerators greater than or equal to denominators (e.g., \(\frac{9}{8}\), \(\frac{12}{5}\)).

- Converting improper fractions to mixed numbers involves division and finding the remainder.

- Converting mixed numbers to improper fractions involves multiplication and addition.


Here are some exercises involving proper and improper fractions, along with solutions:


### Exercise 1: Converting Improper Fractions to Mixed Numbers

Convert the following improper fractions to mixed numbers:


1. \( \frac{11}{4} \)

2. \( \frac{19}{5} \)

3. \( \frac{22}{7} \)

4. \( \frac{15}{3} \)

5. \( \frac{35}{6} \)


**Solutions:**


1. \( \frac{11}{4} \) = 2 \(\frac{3}{4}\)

2. \( \frac{19}{5} \) = 3 \(\frac{4}{5}\)

3. \( \frac{22}{7} \) = 3 \(\frac{1}{7}\)

4. \( \frac{15}{3} \) = 5

5. \( \frac{35}{6} \) = 5 \(\frac{5}{6}\)


### Exercise 2: Converting Mixed Numbers to Improper Fractions

Convert the following mixed numbers to improper fractions:


1. 2 \(\frac{3}{4}\)

2. 4 \(\frac{2}{3}\)

3. 1 \(\frac{5}{6}\)

4. 3 \(\frac{7}{8}\)

5. 5 \(\frac{1}{2}\)


**Solutions:**


1. 2 \(\frac{3}{4}\) = \( \frac{11}{4} \)

2. 4 \(\frac{2}{3}\) = \( \frac{14}{3} \)

3. 1 \(\frac{5}{6}\) = \( \frac{11}{6} \)

4. 3 \(\frac{7}{8}\) = \( \frac{31}{8} \)

5. 5 \(\frac{1}{2}\) = \( \frac{11}{2} \)


### Exercise 3: Adding Proper Fractions

Add the following fractions and simplify if possible:


1. \( \frac{2}{5} + \frac{3}{5} \)

2. \( \frac{1}{4} + \frac{2}{4} \)

3. \( \frac{3}{8} + \frac{1}{8} \)

4. \( \frac{5}{12} + \frac{7}{12} \)

5. \( \frac{1}{6} + \frac{5}{6} \)


**Solutions:**


1. \( \frac{2}{5} + \frac{3}{5} = \frac{5}{5} = 1 \)

2. \( \frac{1}{4} + \frac{2}{4} = \frac{3}{4} \)

3. \( \frac{3}{8} + \frac{1}{8} = \frac{4}{8} = \frac{1}{2} \)

4. \( \frac{5}{12} + \frac{7}{12} = \frac{12}{12} = 1 \)

5. \( \frac{1}{6} + \frac{5}{6} = \frac{6}{6} = 1 \)


### Exercise 4: Subtracting Improper Fractions

Subtract the following fractions and simplify if possible:


1. \( \frac{9}{4} - \frac{5}{4} \)

2. \( \frac{11}{6} - \frac{7}{6} \)

3. \( \frac{10}{8} - \frac{3}{8} \)

4. \( \frac{14}{5} - \frac{9}{5} \)

5. \( \frac{13}{9} - \frac{4}{9} \)


**Solutions:**


1. \( \frac{9}{4} - \frac{5}{4} = \frac{4}{4} = 1 \)

2. \( \frac{11}{6} - \frac{7}{6} = \frac{4}{6} = \frac{2}{3} \)

3. \( \frac{10}{8} - \frac{3}{8} = \frac{7}{8} \)

4. \( \frac{14}{5} - \frac{9}{5} = \frac{5}{5} = 1 \)

5. \( \frac{13}{9} - \frac{4}{9} = \frac{9}{9} = 1 \)


These exercises should help you practice converting between improper fractions and mixed numbers, as well as adding and subtracting fractions.

Comments

Popular posts from this blog

Punctuation marks with details

Explanation of various punctuation marks: 1. ** Full Stop (.)**: Used to mark the end of a declarative sentence. Example: "She went to the store." 2. ** Comma (,)**: Used to separate items in a list, clauses, or to set off introductory elements. Example: "We bought apples, oranges, and bananas." 3. ** Question Mark (?)**: Placed at the end of a sentence to indicate a direct question. Example: "How are you?" 4. ** Exclamation Mark (!)**: Used to express strong emotion or emphasis. Example: "Watch out!" 5. ** Colon (:)**: Introduces a list, quote, explanation, or example. Example: "She had three options: run, hide, or fight." 6. ** Semicolon (;)**: Links closely related independent clauses or separates items in a complex list. Example: "She loves reading; he prefers movies." 7. ** Apostrophe (')**: Indicates possession or forms contractions. Example: "John's book" or "don't." 8. ** Quotatio...

Hindi to english translate story

Hindi story along with its English translation: Hin diStory:* Hindi Story: एक समय की बात है, एक गाँव में एक गरीब किसान रहता था। उसका नाम रामू था। रामू बहुत मेहनती था, लेकिन उसकी जमीन बंजर थी। एक दिन, रामू को अपनी जमीन में एक पुराना घड़ा मिला। उसने सोचा कि इसमें जरूर कोई खजाना होगा। उसने घड़ा खोला, लेकिन उसमें सिर्फ एक पुराना चिराग था। रामू ने चिराग को साफ किया, तभी अचानक एक जिन्न प्रकट हुआ। जिन्न ने कहा, "मालिक, मैं आपका सेवक हूँ। मुझे जो भी आदेश देंगे, मैं उसे पूरा करूँगा।" रामू बहुत खुश हुआ और उसने जिन्न से कहा, "जिन्न, मुझे बहुत सारा सोना ला दो।" जिन्न ने पल भर में रामू के सामने ढेर सारा सोना रख दिया। अब रामू अमीर हो गया। कुछ समय बाद, रामू ने जिन्न से कहा, "जिन्न, मुझे एक सुंदर महल बना दो।" जिन्न ने तुरन्त एक शानदार महल बना दिया। अब रामू के पास सब कुछ था। रामू ने सोचा, "अब मुझे किसी चीज़ की ज़रूरत नहीं है।" उसने जिन्न को आज़ाद कर दिया और खुशहाल जीवन जीने लगा। *English Translation:* Once upon a time, in a village, there lived a poor farmer name...